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Abstract

The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions
relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle
position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (a) and
the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods;
the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference
approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numer-
ical and experimental data show that both methods can be used to accurately resolve the flow field around particles and
calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as com-
pared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag
reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200,
respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depend-
ing on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are
detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible
even under very dilute conditions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Multiphase flow systems are used for a wide range of industrial applications, and in order to improve
the efficiency of these applications it is important to obtain a better understanding of particle dynamics.
Generally, industrial applications operate within the particle Reynolds number range 20–300, motivating stud-
ies of particle interaction within this interval. Although the stability of the flow past solid spherical particles
and the wake formation behind particles previously have been thoroughly investigated, the focus has primarily
been on flow around single particles. Thus, there is a lack of knowledge concerning particle interaction
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motivating further research to improve the understanding and developing more advanced models for particle
laden flows. Parameters affecting the drag and lift force a particle is subjected to are the number of surround-
ing particles, the distance and relative position to other particles in the flow, the Reynolds number and the
presence of walls. Examining these parameters and their effect on the flow characteristics, may yield a better
understanding of the interaction between particles. The data can in turn be used to improve multiphase flow
models.

The flow around single spherical particles and the different transition modes the flow undergoes as the
Reynolds number is increased have been investigated in numerous studies, for example Fornberg (1988), John-
son and Patel (1999), Kim and Pearlstein (1990) and Lee (2000). For particles placed in an uniform flow at low
Reynolds numbers, the flow past single particles are know to be attached and steady. Taneda (1956) observed
that as the Reynolds number reaches a value of approximately 24, a steady axisymmetric recirculation zone is
formed as the boundary layer is separating from the particle. More recent studies have reported this first tran-
sition to occur at Re = 20 (Johnson and Patel, 1999). With increasing Reynolds number the wake downstream
a particle increases and the axisymmetry in the wake structure is lost as the Reynolds number reaches a value
of 210–212 (Johnson and Patel, 1999; Natarajan and Acrivos, 1993; Taneda, 1956; Tomboulides and Orszag,
2000). However, the flow stays stable until the third transition mode occurs, where the recirculation zone
looses its stability and the flow becomes unsteady. The third transition has been reported by Natarajan
and Acrivos (1993) to occur at a Re of 277.5, whereas Tomboulides and Orszag (2000) observed the third
mode to occur in the interval Re = 270–285 and Johnson and Patel (1999) predicted a value within the range
Re = 270–280. Although the motion is now unsteady, the flow still exhibits time periodicity and planar sym-
metry around the plane where the shedding process is initiated.

Considering the flow past a single particle, the question of what effect the introduction of a second particle
will have on the flow field arises. Regarding flow past dual particles at low Reynolds numbers, the most gen-
eral studies are the theoretical works presented by Smoluchowski (1911) and Happel and Brenner (1965) who
calculated the drag, lift and torque of two spheres moving with the same velocity in a still fluid using the
method of reflections. For the case of two spheres placed in line, Faxen (1925) extended Smoluchowskis solu-
tion for the drag to higher order. Stimson and Jeffery (1926), with a corrigendum by Faxen (1927), solved the
same problem using polar coordinates finding an exact solution for the drag force for two particles with equal
diameter and velocity. For two spheres placed in line and separation distances larger than four particle diam-
eters, the solutions of Smoluchowski (1911), Happel and Brenner (1965), Faxen (1927) and Stimson and Jeff-
ery (1926) agree almost completely. Among the first experimental studies that considers the interaction
between particles, still at low Reynolds numbers, are the works by Eveson et al. (1959), Happel and Pfeffer
(1960) and Rowe and Henwood (1961). Happel and Pfeffer (1960) observed an increase in terminal velocity
for two particles falling in tandem formation in a viscous fluid compared to an isolated particle, this is in turn
equivalent to a reduced drag. In more recent work, both experimentally and numerically, flow past particles in
a larger range of Reynolds numbers have been investigated. Kim et al. (1993) investigated numerically the
dependency of drag, lift and momentum coefficients on particle separation distance for particles held fixed
in a side-by-side arrangement, i.e. the centers of the particles are connected to a line perpendicular to the flow
direction. The same particle formation was numerically and experimentally investigated by Folkersma et al.
(2000) and Brydon and Thompson (2001) by varying the separation distance between the particles. Particles
placed side-by-side and in tandem formations are the two most frequently investigated dual particle arrange-
ment. Both particle formations mentioned above were investigated experimentally by Chen and Lu (1999) and
numerically by Tsuji et al. (2003). These studies examined the dependency of wake structure, flow separation
and drag effects on inter-particle distance and Reynolds number. Chen and Lu (1999) also considered three
particles arranged side-by-side. Further, Liang et al. (1996) investigated five different dual particle arrange-
ments changing the particle position in relation to the flow direction. An extended study of particle interaction
was presented by Olsson and Fuchs (1998) and Chen and Wu (2000), where all positions as one particle is
moved around a reference particle were considered. A common conclusion in the aforementioned studies is
that the separation distance plays an important role on the drag of interacting particles.

In general, increasing the Reynolds number decreases the drag force. When two particles are held fixed in a
side-by-side formation at intermediate and high Reynolds numbers, the drag force increases as the separation
distance between the particles decreases. Furthermore, at small distances and relatively small Reynolds
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numbers (�100), with the particles almost in contact, the flow is reported to consider the particles as a single
body due to a blockage effect (Folkersma et al., 2000; Olsson and Fuchs, 1998; Tsuji et al., 2003). This block-
age effect, caused by the high-pressure region between the particles, forces the fluid to move away from the gap
and move around the particles, inducing repulsion. Kim et al. (1993) and Folkersma et al. (2000) found that
the particles repelled each other at small separation distances and weakly attracted each other at intermediate
separation distances. However, as the Reynolds number is increased, a ‘‘nozzle effect’’, i.e. high velocity in the
gap between the particles was observed by Tsuji et al. (2003). The ‘‘nozzle effect’’ results in a shift of front
stagnation points of the two particles which in turn causes repulsion.

For particles in a tandem arrangement, the high-pressure region in front of the downstream particle is inter-
ferring with the low pressure region behind the upstream particle. Because of these pressure interferences and a
‘‘slipstream effect’’, i.e. the trailing particle experiences a smaller flow velocity, the leading particle will be sub-
jected to a larger drag force than the trailing particle, although it is smaller than compared to the drag of a
single particle. As the particles are moved further apart, the drag force gradually levels of to the value of an
isolated particle. The parameter strongly influencing the drag force for this type of arrangement appears to be
whether the trailing particle is in the wake of the upstream particle or not (Olsson and Fuchs, 1998; Zhu et al.,
1994). Particles positioned in tandem are not subjected to any lift force for Reynolds number less than 210.
The lift force increases with decreasing distance between the particles.

The main purpose of this paper is to study in detail the particle–particle interaction at intermediate Rey-
nolds numbers, focusing on the variation of the drag and lift coefficients as compared to the single particle
case. The distance and angle used to define the particle position, together with the particle Reynolds number
are taken as free parameters. Also, the performance of two conceptually independent numerical approaches
are compared.
2. Numerical methods

Two different numerical approaches used for the computations; first a conventional incompressible Navier–
Stokes solver combined with the Volume of Solid (VOS) Method to represent the particle phase and secondly,
the Lattice Boltzmann Method (LBM), based on the Boltzmann equation.
2.1. Volume of Solid Method

The Volume of Solid (VOS) Method (Lörstad and Fuchs, 2001), based on the Volume of Fluid (VOF)
approach, is used to represent the spherical particles. However, in VOS, the ‘‘second fluid’’ is a solid body
assumed to have an infinite viscosity. Since the shear stresses are nearly constant due to the fact that viscous
forces are dominating close to the surface, combined with the assumed infinite viscosity of the solid phase, the
averaged viscosity can be represented by the following equation:
l ¼ ll

a
ð1Þ
where a is the phase variable representing the amount of fluid in each cell, 0 < a < 1, and ll is the dynamic
viscosity of the continuous (liquid) phase. Cells containing the solid phase (a = 0) will be blocked since there
is no flow inside the solid body, and no computations will be carried out for these cells. With a constant den-
sity, (1) can be written as
m ¼ ml

a
ð2Þ
with ml representing the kinematic viscosity of the continuous (liquid) phase. Using the relation above, the
viscosity ratio term, dm, can be defined as
dm ¼ ml

ml

¼ 1

a
ð3Þ
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It should be noted that in most computational cells, the viscosity average will have the value of unity. With the
definition of the viscosity term, as stated in (3), the continuity and momentum equations governing an isother-
mal, incompressible flow of a Newtonian fluid are as follows:
oui

oxi
¼ 0 ð4Þ

oui

ot
þ uj

oui

oxj
¼ � op

oxi
þ 1

Re
o

oxj
dm

oui

oxj
þ ouj

oxi

� �
ð5Þ
with p and Re representing the pressure and the Reynolds number (Re = qUL/l), respectively. Eqs. (4) and (5)
are discretized on a Cartesian staggered grid using second-order central differences for all spatial derivatives
except for the convective terms where a first-order upwind scheme is used. To improve the accuracy without
loosing any numerical stability, a defect correction method (Gullbrand et al., 2001) is used to obtain third-or-
der accuracy for convective terms and fourth-order for the remaining terms. A multi-grid method is applied
within each time step in order to increase the computational efficiency.

Integrating the steady Navier–Stokes equations over a control volume and transforming this volume inte-
gral into a surface integral by using Gauss theorem, the following equation is obtained:
F h ¼
Z Z

C
uiujnj þ pnidij �

1

Re
oui

oxj
þ ouj

oxi

� �
nj

� �
dC ð6Þ
where C is the surface of a control volume, ni is the unit vector normal to the surface and dij is Dirac’s distri-
bution function. Here the control volume is created by subtracting the particle from a surrounding cubical
box. By integrating equation (6) on the outer surfaces of this control volume, i.e. the faces of the cubic, the
forces acting on an object are obtained.
2.2. Lattice Boltzmann Method

The second method used in the present study is the Lattice Boltzmann Method (LBM), an alternative
approach to conventional continuum methods. Instead of being based on conservation laws formulated at
continuum level, LBM solves the Boltzmann equation (7) describing the fluid flow on a molecular level:
of
ot
þ �v � rf ¼ of

ot

� �
collision

ð7Þ
The probability of finding a number of molecules with a certain velocity, �v, at a certain position, �x, and
time, t, is represented by the real distribution function, f ð�x;�v; tÞ. To describe the process governing the mac-
roscopic transport phenomena, the collision operator, of

ot

� �
collision

, representing the particle distribution for each
collision, is used. Velocity and distribution functions are discretized on a finite sets of velocity directions, �ei.

In order to avoid using the complex collision operator in Eq. (7), the more straightforward BGK collision
operator (Bhatnagar et al., 1954), � 1

s ðfi � f eq
i Þ, is applied. Through the utilization of the BGK operator, the

distribution function approaches an equilibrium distribution, f eq
i , known as the Maxwell–Boltzmann distribu-

tion, a solution to the Boltzmann equation (7). The rate at which the Maxwell–Boltzmann distribution is
reached is determined by the relaxation time, s. The discretized Boltzmann equation with a BGK operator
(Qian et al., 1992), is obtained by discretizing equation (7).
fið�xþ �eiDt; t þ DtÞ � fið�x; tÞ ¼ �
1

s
ðfi � f eq

i Þ ð8Þ
Hence, at each time step, Dt, the molecules are transported a distance �eiDt.
There are different possibilities to discretize the velocity into finite sets of velocity directions, �ei. In this

study, the three-dimensional 19 velocity (D3Q19) model is used, illustrated in Fig. 1 (Qian et al., 1992).
The D3Q19 model consists of 6 straight velocity vectors (i = 1, . . . , 6), 12 diagonal velocity vectors
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Fig. 1. Discrete velocity vectors of the D3Q19 model.

L. Prahl et al. / International Journal of Multiphase Flow 33 (2007) 707–725 711
(i = 7, . . . , 18) and one velocity vector for resting molecules, (i = 19). Introducing the lattice constant c, defined
as c ¼ Dx

Dt, the 19 different velocity directions are
�ei ¼
ð�1; 0; 0Þc; ð0;�1; 0Þc; ð0; 0;�1Þc i ¼ 1; . . . ; 6

ð�1;�1; 0Þc; ð�1; 0;�1Þc; ð0;�1;�1Þc i ¼ 7; . . . ; 18

ð0; 0; 0Þc i ¼ 19

8><
>:
Thus, the equilibrium function, using the D3Q19 model, is defined as follows (Qian et al., 1992):
f eq
i ð�x; tÞ ¼ wiq 1þ 3

�ei � �uð�x; tÞ
c2

þ 9

2

ð�ei � �uð�x; tÞÞ2

c4
� 3

2

�uð�x; tÞ2

c2

 !
ð9Þ
with
wi ¼

1

18
i ¼ 1; . . . ; 6

1

36
i ¼ 7; . . . ; 18

1

3
i ¼ 19

8>>>>>><
>>>>>>:
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The kinematic viscosity is determined by the relaxation time through Eq. (10). Density and velocity are
obtained locally using Eqs. (11) and (12):
m ¼ 1

6
c2Dtð2s� 1Þ ð10Þ

qð�x; tÞ ¼
Xn

i¼0

fið�x; tÞ ð11Þ

qð�x; tÞ�uð�x; tÞ ¼
Xn

i¼0

fið�x; tÞ�ei ð12Þ
3. Problem set-up

In this study, two equally sized spherical particles with a diameter D are held fixed at several relative posi-
tions in a rectangular domain, shown in Fig. 2. The positions are defined by two parameters; the separation
distance, d0, and the angle between the line connecting the centers of the particles and free-stream direction, a,
depicted in Fig. 3. The angle is varied from 0� to 360� using 15� increment and the separation distance, d0, is
set to 1.5D, 3.0D, 4.5D and 6.0D. Reynolds numbers of 50, 100 and 200 are considered and an uniform veloc-
ity profile is applied at the inlet. The remaining boundary conditions are Neumann (for VOS and LBM(II))
and Dirichlet (for LBM(I)) condition at the outlet, symmetry conditions on the lateral boundaries and a
no-slip condition on the particle surface. The LBM codes impose a curved no-slip boundary condition with
second-order interpolation (Bouzidi et al., 2001) and the force acting on the particle due to the fluid flow is
calculated by the momentum exchange between the fluid and the particle on the particle surface (Ladd,
1994). Regarding the velocity components, W is the streamwise velocity whereas U and V represent the trans-
versal velocities. In all result plots, the velocity is scaled by the inlet velocity, Wmax.
Fig. 2. The computational domain for flow past two particles.

0

α

d

Fig. 3. Definition of separation angle a and distance d0 for two particles.



Table 1
The geometrical domain, grid resolution and the position of the reference particle

Domain (x,y,z) Grid resolution, h Position reference particle (x,y,z)

VOS 32D · 32D · 32D D/32 (16D, 16D, 10D)
LBM(I) 9D · 9D · 17.5D D/16 (4.5D, 4.5D, 6.5D)
LBM(II) 6D · 6D · 24.5D D/12 (3D, 3D, 8D)

The geometrical domain is set for dual particles when d0 = 1.5D and a = 0�.
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The difference between LBM(I) and LBM(II) lies, as mentioned above, in the formulation of the inlet and
outlet boundary conditions. Common for both LBM(I) and LBM(II) is that inlet distribution functions, f inlet

i ,
with desired values of density, qinlet, and inflow velocity, uinlet, specifies the inlet velocity profile. However,
LBM(I) uses Eq. (13), specified on all inlet boundary nodes for all 19 directions (Dupuis, 2002), whereas
LBM(II) applies Eq. (14) only on the boundary nodes in the main flow direction (Aidun et al., 1998). Consid-
ering the outlet boundary condition, LBM(I) and LBM(II) use Dirichlet and Neumann (Aidun et al., 1998)
boundary condition, respectively, on all outlet boundary nodes:
f inlet
i ¼ 1

s
f eq

i ðqinlet; uinletÞ þ 1� 1

s

� �
f inlet

i ð13Þ

f inlet
i ¼ f inlet

i þ 2qinletwiuinlet ð14Þ
Considering the dual particle simulations, the domain as well as the grid resolution are adjusted to the per-
formance of the different codes in order to achieve more accurate result, Table 1. For VOS, the geometrical
domain is fixed and the particles are positioned inside the pre-defined domain. However, for the two LBM
codes the domain size is varied with the position of the downstream particle in order to keep the distance from
the particles to the closest lateral boundary constant for all configurations. For LBM(I) the distance between
the leading particle and the inlet is 6.5D, between the trailing particle and the outlet 9.5D and between the
particles and the closest lateral boundary, the distance is 4.5D. For LBM(II) the distance between the leading
particle and the inlet is 8D, between the trailing particle and the outlet 15D and between the particles and the
closest lateral boundary, the distance is 3D.

In order to ensure correct code implementation and to assess accuracy of the problem set-up an accuracy
study and a comparison of VOS and the two versions of LBM are performed for a single particle for different
Reynolds number, grid resolution and domain size.

4. Results

4.1. Numerical accuracy and comparison of methods

The three flow solvers used in this study are compared to each other as well as to numerical and experimen-
tal data from literature. It should be noted that in all result figures, the drag coefficient is normalized with the
drag coefficient of an isolated object for the Reynolds number of interest.

First, a numerical accuracy assessment, varying the domain size and the grid resolution, is performed sep-
arately for each solver. Fig. 4, shows the variation of drag with increasing domain size as well as grid resolu-
tion for a single particle at a Reynolds number of 100 using VOS. It can be concluded that a grid resolution of
D/h = 64 only provides a marginal change in drag compared to D/h = 32. In terms of grid resolution, the
physical length of the boundary layer is within the interval of d/h = 5.12–9.6 and d/h = 2.56–4.8 for
Re = 50 and Re = 200, respectively when using D/h = 32 (Schlichting, 1955). The same tendency is shown
in Fig. 5 where the dependency of grid resolution for (a), the transversal velocity from a section in the recir-
culation region of the particle and (b), the streamwise velocity in the mid-plane of the domain are displayed. In
order to ensure that surrounding boundaries do not influence the flow past a particle, the domain size is set to
32 · 32 · 32D.

Flow around a single particle at a Reynolds number of 50 for different domain sizes and grid resolutions is
used in order to investigate the performance of the LBM(I) solver (Fig. 6). According to results shown in
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Fig. 6(b), compared to VOS, LBM(I) appears to be less influenced by the grid resolution. Considering the mar-
ginal changes in drag, D/h = 16 is chosen for the simulations. The physical length of the boundary layer in
terms of grid resolution, is within the interval of d/h = 2.56–2.4 and d/h = 1.28–2.4 for Re = 50 and
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Re = 200, respectively for a grid resolution of D/h = 16 (Schlichting, 1955). In LBM(I), the domain size is
defined by three different directions; the distance from the particle center to inlet boundary as well as the outlet
boundary, and the lateral distance between the symmetry boundaries. In order to minimize the influence of the
boundaries, the distances to the inlet, outlet and lateral boundaries are set to 6.5D, 9.5D and 4.5D, respec-
tively, Fig. 6(a). As shown in Fig. 7, the transversal and streamwise velocity profiles show little or no change
with increasing grid resolution. Thus, the drag is apparently more affected by the grid resolution than the flow
velocity. One explanation for this may be that drag is calculated from the momentum exchange method, where
increasing the resolution will increase the number of points representing the particle wall, defined by a curved
boundary of second-order interpolation, resulting in a decrease of fluctuation in drag.

The numerical accuracy assessment for the LBM(II) solver is performed for a Reynolds number of 30 for
the domain size and the grid resolution, shown in Fig. 8. A grid resolution of D/h = 12 is chosen for the sim-
ulations. For D/h = 12, the physical length of the boundary layer in terms of grid resolution, is within the
interval of d/h = 1.92–3.6 and d/h = 0.96–1.8 for Re = 50 and Re = 200 (Schlichting, 1955). A domain size
with the particle distances to the inlet, outlet and the lateral boundaries set to 8D, 15D and 3D, respectively,
showed a reduced influence of the boundaries on drag computations. Fig. 9 shows the influence of the velocity
profiles as a function of the grid resolution. The wake length is decreasing with increasing grid resolution and
for D/h = 12 the wake length is 0.16D.

Secondly, the three different solvers were compared with experimental data from Wieselberger et al. (1923),
for flow around a single particle at a Reynolds number of 50. The relative error of the drag coefficient, Table 2,
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Table 2
The relative error of drag compared to experiments (Wieselberger et al., 1923) at Re = 50

Numerical method Relative error (%)

VOS 0.6
LBM(I) 2.3
LBM(II) 2.3
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using a domain size and grid resolution optimized for each individual solver, shows that results obtained from
VOS agree better with experimental data compared to the two LBM solvers. Considering Fig. 10, all three
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solvers show good agreement with both numerical and experimental data found in literature for the drag coef-
ficient as well as the wake length for flow around a single particle at a wide range of Reynolds numbers.

Finally, a comparison between the different computational codes is performed by considering the velocity
profiles at different sections in the domain for a Reynolds number of 50. The geometrical domain is set to
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Fig. 13. Contour plot of the streamwise velocity for twin particles at a Reynolds number of 200. D0 = 3.0D and a = 15�.
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(x,y,z) = (5D, 5D, 16D) with the center of the particle positioned at (x,y,z) = (2.5D, 2.5D, 8D), shown in
Fig. 11. A grid resolution of D/h = 16 is used for all numerical methods and the results are compared at sev-
eral sections in the domain. The streamwise velocity profiles at some sections are shown in Fig. 12. Fig. 12(a),
depicts the profile of the streamwise velocity component downstream the particle (z = 9D). The difference
between the solvers is marginal. However, in Fig. 12(b), displaying the streamwise velocity profile at
x = 2D and x = 2.5D, differences between the solvers are visible. At x = 2.5D, LBM(II) predicts a shorter
wake length compared to LBM(I) and VOS. According to experimental data, the wake length for a Reynolds
number of 50 is 0.43D (Taneda, 1956). All three solvers obtained a wake length of 0.39D. Due to the different
outlet boundary conditions, the velocity gradient at the section behind the particle is smaller for LBM(I) com-
pared to LBM(II). Thus, the choice of inlet and outlet conditions has an influence on the results even though
the same numerical method is used (LBM). Also, LBM(II) shows an oscillation of velocity with an increase of
velocity at 3 < z/D < 7 and a decrease of velocity further downwards, compared to VOS and LBM(I). For
x = 2D, the three methods exhibit the same tendency. For this particular case, VOS has a relative error of
7.8% whereas LBM(I) and LBM(II) have relative errors of 3.8% and 5.8%, respectively, compared to Wiesel-
berger et al. (1923). Furthermore, using the same geometrical set-up as in Fig. 11, the computational time has
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been evaluated. VOS used 2.7 s per iteration, whereas the time for LBM(I) and LBM(II) are 2.0 s and 11.0 s,
respectively. Comparing VOS and LBM(I) displayed good resemblance, leading to the conclusion that there is
no obvious choice of method from the computational point of view.

4.2. Twin particles

Contour plots of drag and lift coefficients for the secondary particle as well as variation of drag and lift as a
secondary particle is placed at different locations relative a reference particle starting at a position downstream
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of the reference particle are displayed in Figs. 14–16 (drag) and 21–23 (lift) for Re = 50, 100 and 200. It should
be noted that CD is normalized by the drag of a single particle for the Reynolds number of interest whereas CL

is left unchanged.
Regarding CD, a mutual feature for the different Reynolds numbers is that the largest change in drag occurs

for the tandem arrangement. Considering Figs. 14–16, the width of the downstream area where the reference
particle affects the drag of a secondary particle is narrowed and elongated as the Reynolds number is
increased. The three contour plots indicate that as the particles are moved further apart, the reference particle
has less impact on the secondary particle. The maximum drag reduction for the secondary particle in a tandem
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formation compared to a single particle is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively.
Furthermore, for particles placed in tandem, the change in drag is found to closely correspond to d�e

0 , where
the constant e is within the interval 0.45–0.48 depending on the Reynolds number (Fig. 17).

Since the results obtained using VOS, LBM(I) and LBM(II) are close to identical, only results from VOS
simulations are show here. As observed in Figs. 14–16, the present data show good agreement with numerical
simulations presented by Olsson and Fuchs (1998). For Reynolds numbers of 50 and 100, the experimental
results of Chen and Wu (2000) show a similar trend of drag compared to present data.

At separation distances of 1.5D and angles within the interval 75–135� for Re = 50, the secondary particle is
subjected to a drag greater than that of a single particle. The same feature is also depict for higher Reynold
numbers, with drag greater than that of an isolated particle occuring at a = 75�, but up to an angle of 165� for
Re = 200. In the experimental study of Chen and Wu (2000), maximum drag was estimated to 1.2 times the
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drag of an isolated particle and occured at an angle of 120� for Re = 100, whereas present results predicts the
maximum value of approximately 1.1 at angle of 105–120�.

Fig. 18(upper left) depicts the drag of a secondary particle for 0� and the results show good agreement with
present data and results from Tsuji et al. (2003). Considering how the drag reduction varies with sphere dis-
tance the present results show the same trend as the experimental data by Chen and Lu (1999) although the
experiments show a somewhat lower reduction. However, concerning the Reynolds number dependency, the
data by Chen and Lu (1999) shows an opposite trend as compared to present results and results by Tsuji et al.
(2003). In order to explain this, further investigation would be needed. Considering the secondary particle for
a = 180�, the drag coefficient shows different trends depending on Reynolds number (Fig. 18 (upper right)).
Reynolds numbers of 50 and 100 show similar features, but as the Reynolds number is increased to 200,
the drag is closer to that of a single particle compared to the two lower Reynolds number cases for
d0 = 1.5D. However, increasing the separation distance for the particle placed at a = 180� to 3.0D, leads to
a decrease in drag for Re = 200, whereas CD for the two lower Reynolds number increases. An explanation
is found in the development of the wake of the reference particle. For single particle flow, with a Reynolds
number of 100, previous simulations and experiments have predicted the wake to have a length of 0.84 �
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0.93D (Shirayama, 1992; Pruppacher et al., 1970). Increasing the Reynolds number will lead to an increase in
wake length. Fig. 13 depicts how the secondary particle is interfering with the wake of the reference particle at
a separation distance of 3.0D and a = 15�. As explained by Tsuji et al. (2003), the separated flow from the
reference particle forms ring-like vorticies in the wake region between the two particles, vortices which appears
to be isolated from the main flow. Considering Fig. 19, showing profiles of the streamwise velocity component
in the center plane, it is evident how the secondary particle interferes with the wake of the reference particle,
especially for Re = 200. For Reynolds number 50, the wake has time to fully develop even at small separation
distances. Also, the velocity field appears to be strongly effected by the separation distance for the higher Rey-
nolds numbers. As the distance is increased, the velocity profile in the wake region almost coincides with the
velocity profile of a single particle (the dashed line). Fig. 20 shows the streamwise and the transversal velocity
component taken 0.75D behind the reference particle in a tandem formation for Re = 50 and 200 and
D0 = 1.5, 3.0 and 4.5D. Again, the differences between the solvers are marginal.

As mentioned in the introduction, a common arrangement when studying interactive particles is the side-
by-side formation. At small separation distances, the particles experience higher drag. As the distance between
the particles approaches d0 = 6D, the drag levels of to that of an isolated particle (Fig. 18 (bottom)).

Compared to drag, the situation for the lift force, the force acting perpendicular to the undisturbed flow, is
somewhat different, Figs. 21–23. For Reynolds numbers of 50 and 100, the largest lift is found for a secondary
particle placed in the zone slightly upstream the reference particle at a separation distance of d0 = 1.5D, where
the particles repel each other. Placed at d0 = 1.5D, the velocity in the gap between the particles is low, indi-
cating a high-pressure region. Due to the high pressure, the fluid will force the particle towards the lower pres-
sure region. However, repulsion forces are not as strong for Re = 100 as for Re = 50. With increasing
Reynolds number (both 100 and 200), attraction forces, due to the low pressure region between the particles,
are found in the area downstream the reference particle. At a Reynolds number of 50, this occurs for
d0 = 1.5D. However, for Re = 200, this feature is also observed at larger separation distances. The results
in Figs. 21–23, can provide an general idea of the particle dynamics. A common feature for Re = 100 and
Re = 200, not visible for Re = 50, is that a particle placed at an angle around 60� for d0 = 1.5D, is not sub-
jected to any lift force. However, the particle could still experience a repulsive force due to difference in drag.
5. Conclusions

The interaction among dual particles for various particle arrangements and Reynolds numbers of 50, 100
and 200 has been investigated using Volume of Solid (VOS) and Lattice Boltzmann Method (LBM). No sig-
nificant difference in terms of accuracy and computational efficiency of the VOS and LBM approaches have
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been found. Both VOS and LBM show similar behaviour when comparing computations of velocity compo-
nents as well as drag and lift forces resulting from the different solvers. Both particle Reynolds number and the
relative position of two spherical particles are found to influence the drag and lift force the particles are sub-
jected to. The strongest effect on drag force when including a second particle in the flow compared to a single
particle case appears for tandem arrangements. The drag reduction for a tandem arrangement is as high as
60%, 70% and 80% for Re = 50, 100 and 200, respectively. When placed with a small separation distance
in a side-by-side arrangement, the secondary particle is found to experience a slightly higher drag compared
to a single particle. Due to high and low pressure regions in the areas between the particles, the particles expe-
rience repulsion and attraction forces, respectively. The largest lift force is found in a formation where the sec-
ondary particle is placed slightly upstream the reference particle at a small separation distance where repulsion
forces appear. In the low pressure region occurring in the area downstream of the reference particle, particles
experience attraction forces for Reynolds numbers of 100 and 200. The results emphasize the need for intro-
ducing new models for accounting for the lift and drag coefficients within the Lagrangian Particle Transport
model framework. Such models can be based on the results shown here.
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Series A 1, 28–39.
Stimson, M., Jeffery, G.B., 1926. The motion of two spheres in a viscous fluid. Proc. Roy. Soc. London A 111, 110–116.
Taneda, S., 1956. Experimental investigation of the wake behind a sphere at low Reynolds number. J. Phys. Soc. Jpn. 11, 302–307.
Tomboulides, A.G., Orszag, S.A., 2000. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416,

45–73.
Tsuji, T., Narutomi, R., Yokomine, T., Ebara, S., Shimizu, A., 2003. Unsteady three-dimensional simulation of interactions between flow

and two particles. Int. J. Multiphase Flow 29, 1431–1450.
Wieselberger, C., Betz, A., Prandtl, L., 1923. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. Technical Report,

Universität Göttingen.
Zhu, C., Liang, S.C., Fan, L.-S., 1994. Particle wake effects on the drag force of an interacting particle. Int. J. Multiphase Flow 20, 117–

129.


	On the interaction between two fixed spherical particles
	Introduction
	Numerical methods
	Volume of Solid Method
	Lattice Boltzmann Method

	Problem set-up
	Results
	Numerical accuracy and comparison of methods
	Twin particles

	Conclusions
	Acknowledgements
	References


